Introduction	Markov Decision Processes	Q-Learning	SARSA- λ	
0000				
Title				

Reinforcement Learning

Josh Bryan

University of Illinois at Chicago, MCS 548

December 14, 2010

Introduction 0000	Markov Decision Processes 00000000	Q-Learning 00000000	
Contents			
	ntroduction Title Contents Overview		
2	Markov Decision Processes Model Introduction Policy		
3 (Q-Learning Learning Task Q Practical Considerations		
4 5	ARSA-λ Introduction SARSA Update Rule Eligibility Traces		
5 (Conclusions		

Introduction	Markov Decision Processes	Q-Learning	
0000			
Overview			

What is Reinforcement Learning?

Reinforcement learning takes psychology, decision theory, and learning theory to answers "How should an agent learn to act?"

- Classical Conditioning (Pavlov's Dog)
- Utility Theory
- (Partially Observable) Markov Decision Processes
- Learns an "Agent Function"

Introduction	Markov Decision Processes	Q-Learning	SARSA- λ	Conclusions
00000				
Overview				
Agent Fu	nction			

- $\bullet~O$ is a set of observation symbols.
- $\bullet~A$ is a set of actions.

 $f:O^*\to A$

Introduction	Markov Decision Processes 00000000	Q-Learning 00000000	
Overview			
Uses			

- Game playing (e.g. backgammon)
- Learning tasks with delayed feedback
- Elevator Control
- Robotic Control (e.g. stick balancing, car driving)
- Simulation Based Approximation Methods (similar to fictitious play)
- Telecommunications (e.g. learning optimal routing)

	Markov Decision Processes	Q-Learning 00000000	SARSA- λ 0000	
Model Introduction				
M/hat is ar				

Definition: Markov Decision Process

An MDP is a tuple $\langle S, A, T, R \rangle$ where:

S is a set of states.

A is a set of actions.

T is a transition function.

 $T: S \times A \times S \to [0,1]$

R is a reward function.

 $R:S\times A\to \mathbb{R}$

Introduction 00000	Markov Decision Processes ○●○○○○○○	Q-Learning 00000000	SARSA- λ 0000	
Model Introduction				
Simple E	vample			

As a running example, and as a demo at the end, we will be considering this environment:

- An agent is in a square 10×10 grid world. Therefore $S = \{0, \cdots, 9\}^2$.
- The set of actions are $\{up, down, left, right\}$.
- 20 of the grid squares are "bad" and give a reward of -1.
- 2 of the grid squares are "good" and give a reward of 3.
- Every action taken invokes a penalty of -0.01.

	Markov Decision Processes	Q-Learning	SARSA- λ	Conclusions
	000000			
Model Introduction				
Simple Ex	ample			

	Markov Decision Processes ○○○●○○○○	Q-Learning 00000000	SARSA- λ 0000	Conclusions O
Policy				
What is	a Policv?			

Definition: Policy

A policy π is a mapping from states to actions.

$$\pi:S\to A$$

	Markov Decision Processes	Q-Learning 00000000	
Policy			
Value of	Policy		

The value of a policy $V^{\pi}(s)$ is the **total discounted reward** obtained by starting at a state s and following the policy π .

$$V^{\pi}(s) = E[R(s_0, \pi(s_0)) + \gamma(R(s_1, \pi(s_1)) + \gamma(\dots))|\pi, s_0 = s]$$

= $E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t, \pi(s_t)) \middle| \pi, s_0 = s\right]$

Here, $0 \le \gamma \le 1$ is the discount factor. If $\gamma = 1$ this expectation may not exist unless the horizon is finite.

	Markov Decisio	on Processes	Q-Learning	
Policy				

Alternative Value of Policy

The value of a policy $V^{\pi}(s)$ is the **long run average reward** obtained by starting at a state s and following the policy π .

$$V^{\pi}(s) = \lim_{n \to \infty} E\left[\frac{\sum_{t=0}^{n} R(s_n, \pi(s_n))}{n} \Big| \pi, s_0 = s\right]$$

	Markov Decision Processes ○○○○○○●●	Q-Learning 00000000	
Policy			
Bellman	Equations I		

The solution to an MDP is an optimal policy π^* that maximizes $V^{\pi^*}(s)$ for all s:

$$\pi^* = \operatorname*{argmax}_{\pi} E\left[\sum_{t=0}^{\infty} \gamma^t R(s_t, \pi(s_t))\right]$$

There are $|A|^{|S|}$ policies. For our example, that's $4^{100}\approx 1.6\times 10^{60}$

	Markov Decision Processes ○○○○○○●●	Q-Learning 00000000	
Policy			
Bellman	Equations II		

Recursive Bellman Equation for π^* and $V^{* \ 1}$ Immediate RewardExpected Future

$$\begin{aligned} \pi^*(s) &= \operatornamewithlimits{argmax}_{a \in A} \qquad \widehat{R(s,a)} \qquad + \gamma \sum_{s' \in S} T(s,a,s') V^*(s') \\ &+ \gamma \sum_{s' \in S} T(s,a,s') V^*(s') \\ &= \underbrace{\operatorname{R(s,\pi^*(s))}}_{a \in A} + \gamma \sum_{s' \in S} T(s,\pi^*(s),s') V^*(s') \\ &= \max_{a \in A} R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V^*(s') \end{aligned}$$

 $s' \in S$

 ${}^1V^*$ is shorthand for V^{π^*}

もちゃん 聞き ふぼや ふぼや ふちゃ

	Markov Decision Processes 00000000	Q-Learning ●0000000	SARSA- λ 0000	Conclusions O
Learning Task				
What are	we learning?			

• We want to learn π^* .

	Markov Decision Processes 00000000	Q-Learning ●0000000	
Learning Task			
What are	we learning?		

- We want to learn π^* .
- We will do this by learning a Q function:

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V^*(s')$$

	Markov Decision Processes 00000000	Q-Learning ●0000000	SARSA- λ 0000	
Learning Task				
What are	we learning?			

- We want to learn π^* .
- We will do this by learning a Q function:

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V^*(s')$$

• If we learn Q(s, a) then

$$\pi^*(s) = \operatorname*{argmax}_{a \in A} Q(s, a)$$

	Markov Decision Processes 0000000	Q-Learning ○●○○○○○○	SARSA -λ 0000	
Learning Task				
What are	e we given?			

• We are given A and S and a sequence $\langle s_0, a_0, r_0, s_1, a_1, r_1, \ldots \rangle$ where $s \in S$ is observable and sampled by the environment according to T, $a \in A$ is chosen by the agent, and r = R(s, a).

	Markov Decision Processes	Q-Learning ○●○○○○○○	
Learning Task			
What are	e we given?		

• We are given A and S and a sequence $\langle s_0, a_0, r_0, s_1, a_1, r_1, \ldots \rangle$ where $s \in S$ is observable and sampled by the environment according to T, $a \in A$ is chosen by the agent, and r = R(s, a).

• We are not given T or R.

	Markov Decision Processes	Q-Learning ○●○○○○○○	
Learning Task			
What are	e we given?		

- We are given A and S and a sequence $\langle s_0, a_0, r_0, s_1, a_1, r_1, \ldots \rangle$ where $s \in S$ is observable and sampled by the environment according to T, $a \in A$ is chosen by the agent, and r = R(s, a).
- We are not given T or R.
- We are not going to learn T or R.

Introduction 00000 Markov Decision Processes

Q-Learning

SARSA- λ

Conclusions 0

Learning Task

Model Free vs. Model Based Learning

Model Free

The agent learns to act in specific environment, but does not know or learn a model of that environment.

Model/Knowledge Based

The agent learns a model of the environment and uses the model to compute how to act in the environment.

	Markov Decision Processes 0000000	Q-Learning ○○○●○○○○	
Q			
Q Recursio	n		

We can rewrite the Q function as:

$$Q(s,a) = R(s,a) + \gamma E[Q(s',a)]$$

Markov Decision Processes	Q-Learning	
	0000000	

Q Approximation and Update

We maintain an approximation \hat{Q} of Q:

$$\begin{split} \hat{Q}_{t+1}(s,a) & \leftarrow \hat{Q}_t(s,a) \\ & + \alpha_t(s,a) \Big[\overbrace{R(s,a) + \gamma \max_{a' \in A} \hat{Q}_t(s',a')}^{\text{New Estimate}} - \overbrace{\hat{Q}_t(s,a)}^{\text{Old Estimate}} \Big] \end{split}$$

Where $\alpha_t(s,a)$ is the learning rate. If $\alpha = 0$ then no learning occurs. If $\alpha = 1$ than \hat{Q} is completely overwritten at each transition.

Markov Decision Processes	Q-Learning	
	0000000	

Q Approximation and Update

We maintain an approximation \hat{Q} of Q:

$$\begin{split} \hat{Q}_{t+1}(s,a) & \leftarrow \hat{Q}_t(s,a) \\ & + \alpha_t(s,a) \Big[\overbrace{R(s,a) + \gamma \max_{a' \in A} \hat{Q}_t(s',a')}^{\text{New Estimate}} - \overbrace{\hat{Q}_t(s,a)}^{\text{Old Estimate}} \Big] \end{split}$$

Where $\alpha_t(s,a)$ is the learning rate. If $\alpha = 0$ then no learning occurs. If $\alpha = 1$ than \hat{Q} is completely overwritten at each transition.

This is equivalent to:

$$\hat{Q}_{t+1}(s,a) \leftarrow (1 - \alpha_t(s,a))\hat{Q}_t(s,a) + \alpha_t(s,a) \left[R(s,a) + \gamma \max_{a' \in A} \hat{Q}_t(s',a') \right]$$

	Markov Decision Processes 0000000	Q-Learning ○○○○○●○○	
Practical Consideration	ons		
l earning l	Rate Schedule		

Requirements on Schedule

• $\alpha_t(s, a)$ must decay over time to ensure convergence.

	Markov Decision Processes 00000000	Q-Learning ○○○○○●○○	
Practical Considerati	ions		

Learning Rate Schedule

Requirements on Schedule

- $\alpha_t(s, a)$ must decay over time to ensure convergence.
- $\sum_{i=1}^{\infty} \alpha_{t(i,s,a)}(s,a) = \infty$ where t(i,s,a) is the time state s and action a is visited for the i'th time.

	Markov Decision Processes 00000000	Q-Learning ○○○○○●○○	
Practical Considerati	ions		

Learning Rate Schedule

Requirements on Schedule

- $\alpha_t(s, a)$ must decay over time to ensure convergence.
- $\sum_{i=1}^{\infty} \alpha_{t(i,s,a)}(s,a) = \infty$ where t(i,s,a) is the time state s and action a is visited for the *i*'th time.
- $\sum_{i=1}^{\infty} \alpha_{t(i,s,a)}(s,a)^2 < \infty$

	Markov Decision Processes	Q-Learning ○○○○○●○○	SARSA- λ 0000	
Practical Considerat	ions			

Learning Rate Schedule

Requirements on Schedule

- $\alpha_t(s, a)$ must decay over time to ensure convergence.
- $\sum_{i=1}^{\infty} \alpha_{t(i,s,a)}(s,a) = \infty$ where t(i,s,a) is the time state s and action a is visited for the i'th time.

•
$$\sum_{i=1}^{\infty} \alpha_{t(i,s,a)}(s,a)^2 < \infty$$

A practical solution

$$\alpha_t(s,a) = \frac{1}{1 + visits_t(s,a)}$$

where visits(s, a) is the number of times action a has been taken in state s.

	Markov Decision Processes 00000000	Q-Learning ○○○○○●●	
Practical Considerations			

Learning Policy: Exploration vs Exploitation I

Exploration: Random Policy

- Choose $a \in A$ at Random in each time step.
- \hat{Q} is guaranteed to converge to the true Q.

Exploitation: Locally Optimal Policy

- Choose $a = \operatorname{argmax}_{a \in A} \hat{Q}(s, a)$ in each state s.
- \hat{Q} is only guaranteed to find a local optimum.

	Markov Decision Processes	Q-Learning ○○○○○○●●	
Practical Considerations			

Learning Policy: Exploration vs Exploitation II

Hybrid: Logit Quantal Response or Simulated Annealing

 $\bullet\,$ Choose a according to this probability distribution:

$$P(a) = \frac{e^{\beta \hat{Q}(s,a)}}{\sum_{a' \in A} e^{\beta \hat{Q}(s,a')}}$$

- If $\beta = 0$ this is equivalent to the random policy.
- As $\beta \to \infty$, this becomes the exploitative policy.
- β may be increased over time (similar to simulated annealing).

	Markov Decision Processes	Q-Learning 0000000	SARSA- λ ••••	
Introduction				

How can we improve Q learning? I

On Policy Learning

Q-learning learns the Q function for the optimal policy, not the policy actually being followed. Why would we want to learn a policy other than the optimal?

- Sometimes exploration may be "too dangerous".
- Policy may not be entirely under agent's control (e.g. multiagent settings).
- On Policy Learning allows easier application of eligibility traces.

	Markov Decision Processes	Q-Learning 0000000	SARSA- λ	
Introduction				

How can we improve Q learning? II

Update more than one Q value at a time.

Q-learning only updates a single Q value at a time, so convergence can take a very long time if rewards are delayed. A clever method for updating multiple Q values simultaneously involves eligibility traces.

	Markov Decision Processes 00000000	Q-Learning 00000000	SARSA-λ ○○●○	
SARSA Update Rule				
e a rel	<i>a</i> ′			

For each tuple $\langle s, a, r, s', a' \rangle$, we update \hat{Q} as follows:

$$\hat{Q}_{t+1}(s,a) \leftarrow \hat{Q}_t(s,a) + \alpha_t(s,a) \left[R(s,a) + \gamma \hat{Q}_t(s',a') - \hat{Q}_t(s,a) \right]$$

Note that the only difference is that we use the actual action chosen for the discounted future rather than the maximum valued action.

	Markov Decision Processes 00000000	Q-Learning 00000000	SARSA-λ ○○○●	
Eligibility Traces				
Atomic F	Sread Crumbs			

The key idea is to leave exponentially decaying traces (e(s, a)) identifying actions and states on the path to the current state.

Update Algorithm

	Markov Decision Processes	Q-Learning 00000000	Conclusions O
Demo			

\ldots and now for a demo comparing Q and SARSA- λ learning!

	Markov Decision Processes	Q-Learning 00000000	Conclusions O
Further e	extensions		

- Partial observability.
- Continuous action, state, and observation spaces.
- Q function approximators (e.g. neural networks)
- Exploitation vs. Exploration
- Hybrid model free / model based learning (e.g. feudal architectures)
- Alternative optimality criteria.

	Markov Decision Processes	Q-Learning	SARSA- λ	Conclusions
Sources				
Sources I				

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal of Artificial Intelligence, 4(1):237–285, 1996.

Tom Mitchell. Machine Learning. McGraw Hill, 1997.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (Third Edition). Prentice Hall, 2010.

C J C H Watkins. Learning from Delayed Rewards. PhD thesis, Cambridge University, 1989.