
Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Title

Reinforcement Learning

Josh Bryan

University of Illinois at Chicago, MCS 548

December 14, 2010

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Contents

1 Introduction
Title
Contents
Overview

2 Markov Decision Processes
Model Introduction
Policy

3 Q-Learning
Learning Task
Q
Practical Considerations

4 SARSA-λ
Introduction
SARSA Update Rule
Eligibility Traces

5 Conclusions
Sources

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Overview

What is Reinforcement Learning?

Reinforcement learning takes psychology, decision theory, and
learning theory to answers “How should an agent learn to act?”

Classical Conditioning (Pavlov’s Dog)
Utility Theory
(Partially Observable) Markov Decision Processes
Learns an “Agent Function”

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Overview

Agent Function

O is a set of observation symbols.
A is a set of actions.

f : O∗ → A

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Overview

Uses

Game playing (e.g. backgammon)
Learning tasks with delayed feedback
Elevator Control
Robotic Control (e.g. stick balancing, car driving)
Simulation Based Approximation Methods (similar to fictitious
play)
Telecommunications (e.g. learning optimal routing)

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Model Introduction

What is an MDP?

Definition: Markov Decision Process
An MDP is a tuple 〈S,A, T,R〉 where:

S is a set of states.
A is a set of actions.
T is a transition function.

T : S ×A× S → [0, 1]

R is a reward function.

R : S ×A→ R

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Model Introduction

Simple Example

As a running example, and as a demo at the end, we will be
considering this environment:

An agent is in a square 10× 10 grid world. Therefore
S = {0, · · · , 9}2.
The set of actions are {up, down, left, right}.
20 of the grid squares are “bad” and give a reward of −1.
2 of the grid squares are “good” and give a reward of 3.
Every action taken invokes a penalty of −0.01.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Model Introduction

Simple Example

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Policy

What is a Policy?

Definition: Policy
A policy π is a mapping from states to actions.

π : S → A

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Policy

Value of Policy

The value of a policy V π(s) is the total discounted reward
obtained by starting at a state s and following the policy π.

V π(s) = E[R(s0, π(s0)) + γ(R(s1, π(s1)) + γ(. . .))|π, s0 = s]

= E

[∞∑
t=0

γtR(st, π(st))
∣∣∣π, s0 = s

]

Here, 0 ≤ γ ≤ 1 is the discount factor. If γ = 1 this expectation
may not exist unless the horizon is finite.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Policy

Alternative Value of Policy

The value of a policy V π(s) is the long run average reward
obtained by starting at a state s and following the policy π.

V π(s) = lim
n→∞

E

[∑n
t=0R(sn, π(sn))

n

∣∣∣π, s0 = s

]

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Policy

Bellman Equations I

The solution to an MDP is an optimal policy π∗ that maximizes
V π∗(s) for all s:

π∗ = argmax
π

E

[∞∑
t=0

γtR(st, π(st))

]

There are |A||S| policies. For our example, that’s 4100 ≈ 1.6× 1060

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Policy

Bellman Equations II

Recursive Bellman Equation for π∗ and V ∗ 1

π∗(s) = argmax
a∈A

Immediate Reward︷ ︸︸ ︷
R(s, a) +

Expected Future︷ ︸︸ ︷
γ
∑
s′∈S

T (s, a, s′)V ∗(s′)

V ∗(s) =

Immediate Reward︷ ︸︸ ︷
R(s, π∗(s)) +

Expected Future︷ ︸︸ ︷
γ
∑
s′∈S

T (s, π∗(s), s′)V ∗(s′)

= max
a∈A

R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′)

1V ∗ is shorthand for V π∗

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Learning Task

What are we learning?

We want to learn π∗.

We will do this by learning a Q function:

Q(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′)

If we learn Q(s, a) then

π∗(s) = argmax
a∈A

Q(s, a)

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Learning Task

What are we learning?

We want to learn π∗.
We will do this by learning a Q function:

Q(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′)

If we learn Q(s, a) then

π∗(s) = argmax
a∈A

Q(s, a)

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Learning Task

What are we learning?

We want to learn π∗.
We will do this by learning a Q function:

Q(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′)

If we learn Q(s, a) then

π∗(s) = argmax
a∈A

Q(s, a)

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Learning Task

What are we given?

We are given A and S and a sequence
〈s0, a0, r0, s1, a1, r1, . . . 〉 where s ∈ S is observable and
sampled by the environment according to T , a ∈ A is chosen
by the agent, and r = R(s, a).

We are not given T or R.
We are not going to learn T or R.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Learning Task

What are we given?

We are given A and S and a sequence
〈s0, a0, r0, s1, a1, r1, . . . 〉 where s ∈ S is observable and
sampled by the environment according to T , a ∈ A is chosen
by the agent, and r = R(s, a).
We are not given T or R.

We are not going to learn T or R.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Learning Task

What are we given?

We are given A and S and a sequence
〈s0, a0, r0, s1, a1, r1, . . . 〉 where s ∈ S is observable and
sampled by the environment according to T , a ∈ A is chosen
by the agent, and r = R(s, a).
We are not given T or R.
We are not going to learn T or R.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Learning Task

Model Free vs. Model Based Learning

Model Free
The agent learns to act in specific environment, but does not know
or learn a model of that environment.

Model/Knowledge Based

The agent learns a model of the environment and uses the model
to compute how to act in the environment.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Q

Q Recursion

We can rewrite the Q function as:

Q(s, a) = R(s, a) + γE[Q(s′, a)]

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Q

Q Approximation and Update

We maintain an approximation Q̂ of Q:

Q̂t+1(s, a)←Q̂t(s, a)

+ αt(s, a)
[New Estimate︷ ︸︸ ︷
R(s, a) + γmax

a′∈A
Q̂t(s

′, a′)−

Old Estimate︷ ︸︸ ︷
Q̂t(s, a)

]
Where αt(s, a) is the learning rate. If α = 0 then no learning
occurs. If α = 1 than Q̂ is completely overwritten at each
transition.

This is equivalent to:

Q̂t+1(s, a)←(1− αt(s, a))Q̂t(s, a)
+ αt(s, a)

[
R(s, a) + γmax

a′∈A
Q̂t(s

′, a′)
]

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Q

Q Approximation and Update

We maintain an approximation Q̂ of Q:

Q̂t+1(s, a)←Q̂t(s, a)

+ αt(s, a)
[New Estimate︷ ︸︸ ︷
R(s, a) + γmax

a′∈A
Q̂t(s

′, a′)−

Old Estimate︷ ︸︸ ︷
Q̂t(s, a)

]
Where αt(s, a) is the learning rate. If α = 0 then no learning
occurs. If α = 1 than Q̂ is completely overwritten at each
transition.
This is equivalent to:

Q̂t+1(s, a)←(1− αt(s, a))Q̂t(s, a)
+ αt(s, a)

[
R(s, a) + γmax

a′∈A
Q̂t(s

′, a′)
]

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Practical Considerations

Learning Rate Schedule

Requirements on Schedule

αt(s, a) must decay over time to ensure convergence.

∑∞
i αt(i,s,a)(s, a) =∞ where t(i, s, a) is the time state s and

action a is visited for the i’th time.∑∞
i αt(i,s,a)(s, a)

2 <∞

A practical solution

αt(s, a) =
1

1 + visitst(s, a)

where visits(s, a) is the number of times action a has been taken
in state s.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Practical Considerations

Learning Rate Schedule

Requirements on Schedule

αt(s, a) must decay over time to ensure convergence.∑∞
i αt(i,s,a)(s, a) =∞ where t(i, s, a) is the time state s and

action a is visited for the i’th time.

∑∞
i αt(i,s,a)(s, a)

2 <∞

A practical solution

αt(s, a) =
1

1 + visitst(s, a)

where visits(s, a) is the number of times action a has been taken
in state s.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Practical Considerations

Learning Rate Schedule

Requirements on Schedule

αt(s, a) must decay over time to ensure convergence.∑∞
i αt(i,s,a)(s, a) =∞ where t(i, s, a) is the time state s and

action a is visited for the i’th time.∑∞
i αt(i,s,a)(s, a)

2 <∞

A practical solution

αt(s, a) =
1

1 + visitst(s, a)

where visits(s, a) is the number of times action a has been taken
in state s.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Practical Considerations

Learning Rate Schedule

Requirements on Schedule

αt(s, a) must decay over time to ensure convergence.∑∞
i αt(i,s,a)(s, a) =∞ where t(i, s, a) is the time state s and

action a is visited for the i’th time.∑∞
i αt(i,s,a)(s, a)

2 <∞

A practical solution

αt(s, a) =
1

1 + visitst(s, a)

where visits(s, a) is the number of times action a has been taken
in state s.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Practical Considerations

Learning Policy: Exploration vs Exploitation I

Exploration: Random Policy
Choose a ∈ A at Random in each time step.
Q̂ is guaranteed to converge to the true Q.

Exploitation: Locally Optimal Policy

Choose a = argmaxa∈A Q̂(s, a) in each state s.
Q̂ is only guaranteed to find a local optimum.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Practical Considerations

Learning Policy: Exploration vs Exploitation II

Hybrid: Logit Quantal Response or Simulated Annealing
Choose a according to this probability distribution:

P (a) =
eβQ̂(s,a)∑

a′∈A e
βQ̂(s,a′)

If β = 0 this is equivalent to the random policy.
As β →∞, this becomes the exploitative policy.
β may be increased over time (similar to simulated annealing).

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Introduction

How can we improve Q learning? I

On Policy Learning
Q-learning learns the Q function for the optimal policy, not the
policy actually being followed. Why would we want to learn a
policy other than the optimal?

Sometimes exploration may be “too dangerous”.
Policy may not be entirely under agent’s control (e.g.
multiagent settings).
On Policy Learning allows easier application of eligibility
traces.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Introduction

How can we improve Q learning? II

Update more than one Q value at a time.
Q-learning only updates a single Q value at a time, so convergence
can take a very long time if rewards are delayed. A clever method
for updating multiple Q values simultaneously involves eligibility
traces.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

SARSA Update Rule

s, a, r, s′, a′

For each tuple 〈s, a, r, s′, a′〉, we update Q̂ as follows:

Q̂t+1(s, a)← Q̂t(s, a) + αt(s, a)
[
R(s, a) + γQ̂t(s

′, a′)− Q̂t(s, a)
]

Note that the only difference is that we use the actual action
chosen for the discounted future rather than the maximum valued
action.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Eligibility Traces

Atomic Bread Crumbs

The key idea is to leave exponentially decaying traces (e(s, a))
identifying actions and states on the path to the current state.

Update Algorithm
1 Initialize e(s, a)← 0,∀s ∈ S, a ∈ A.
2 For each 〈s, a, r, s′, a′〉 tuple received:

1 e(ŝ, â)← γλe(ŝ, â)∀ŝ ∈ S, â ∈ A
2 e(s, a)← e(s, a) + 1
3 δ ← R(s, a) + γQ̂t(s

′, a′)− Q̂t(s, a)
4 ∀ŝ ∈ S, â ∈ A

Q̂t+1(ŝ, â)← Q̂t(ŝ, â) + e(ŝ, â)αt(ŝ, â)δ

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Demo

. . . and now for a demo comparing Q and SARSA-λ learning!

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Further extensions

Partial observability.
Continuous action, state, and observation spaces.
Q function approximators (e.g. neural networks)
Exploitation vs. Exploration
Hybrid model free / model based learning (e.g. feudal
architectures)
Alternative optimality criteria.

Introduction Markov Decision Processes Q-Learning SARSA-λ Conclusions

Sources

Sources I

L. P. Kaelbling, M. L. Littman, and A. W. Moore.
Reinforcement learning: A survey.
Journal of Artificial Intelligence, 4(1):237–285, 1996.

Tom Mitchell.
Machine Learning.
McGraw Hill, 1997.

S. Russell and P. Norvig.
Artificial Intelligence: A Modern Approach (Third Edition).
Prentice Hall, 2010.

C J C H Watkins.
Learning from Delayed Rewards.
PhD thesis, Cambridge University, 1989.

	Introduction
	Title
	Contents
	Overview

	Markov Decision Processes
	Model Introduction
	Policy

	Q-Learning
	Learning Task
	Q
	Practical Considerations

	SARSA-
	Introduction
	SARSA Update Rule
	Eligibility Traces

	Conclusions
	Sources

